MONITORING OF METALLURGICAL PROCESSES DURING HOT ROLLING

ITA Ltd., Ostrava, Czech republic

Metallurgical Monitoring What does it mean?

METALLURGICAL MONITORING

prediction of final mechanical properties of hot rolled steel products coupled with process data being received on-line from the rolling mill control system!

Metallurgical Monitoring Three possible levels of implementation

off-line implementation

developed Off-line tool for technologists that enables prediction *c*chanical vet! properties of rolled production based on predefined and manually entered rolling technology parameters.

on-line monitoring

Similar functionality as off-line level by directly to the loading of rolling Level2 of the control system. It enabled technology parameters and passive mo final mechanical properties of whole production.

on-line control

Level2 application that ba strategy to receive reque rolled product.

rolling conditions sets up cooling planned for ed final mechanical properties of the future

It was

Metallurgical Monitoring Physical based temperature & metallurgical modules

Input Data

Technology&Process
Steel Properties

Temperature Module

THERM 1D FEM
Time – Temperature
curve for a single bar

Temperature Module

COIL 2D FEM
Time – Temperature
curve for a bar in coil

METARoll Module

- grain evolution
- recrystallization
- residual strain
- precipitation

The last Pass Data

- residual strain of austenite
 - austenite grain size

METACool Module

- CCT Diagram
- austenite decomposition
- mechanical properties

Output Data

- microstructure in every Pass
- structure shares
- mechanical properties

Metallurgical Monitoring Steel groups and limits of chemical composition

	C	;	M	ln	S	Si	c	r	١	li	N	lo	V	w	Ti	Nb	В	Al	N
GROUP	min	max	min	max	min	max	min	max	min	max	min	max	max	max	max	max	max	max	max
C < 0.06	0.001	0.06	0.05	0.70	0.02	0.30	0	0.10	0	0.10	0	0.10	0.05	-	0.05	0.10	0.004	0.05	0.015
C < 0.20	0.06	0.25	0.20	1.50	0.05	1.50	0	0.40	0	0.25	0	0.10	0.10	-	0.05	0.10	0.004	0.05	0.015
C < 0.50	0.20	0.55	0.20	1.50	0.05	1.50	0	0.40	0	0.25	0	0.10	0.10	-	0.05	0.10	0.004	0.05	0.015
C < 0.95	0.50	1.15	0.20	1.50	0.05	1.50	0	0.40	0	0.25	0	0.10	0.10	-	0.05	-	0.004	0.05	0.015
Mn	0.10	0.50	1.50	2.00	0.05	1.50	0	2.0	0	0.25	0	0.10	0.25	-	-	0.10	0.004	0.05	0.015
Cr C < 0.6	0.15	0.65	0.20	1.20	0.05	0.40	0	1.50	0	0.25	0	0.10	0.40	-	-	-	0.004	0.05	0.015
Cr C > 0.6	0.60	1.15	0.20	1.20	0.05	0.40	0	1.50	0	0.25	0	0.10	0.40	,	,	•	0.004	0.05	0.015
Мо	0.15	0.55	0.40	1.20	0.05	0.40	0	0.40	0	0.25	0	0.40	•	,	•	•	0.004	0.05	0.015
Cr-Mo	0.15	0.65	0.40	1.00	0.05	0.40	0	1.50	0	0.25	0	0.40	-	-	-	-		0.05	0.015
Cr-Si	0.45	0.70	0.20	2.00	1.00	2.00	0	1.50	0	0.25	0	0.10	0.10	1	,	,	,	0.05	0.015
Ni-Cr-Mo	0.15	0.65	0.40	1.00	0.05	0.40	0	1.50	0	3.50	0	0.40	-	-	-	-	-	0.05	0.015

Metallurgical Monitoring — Theoretical Background FEM Temperature calculations

- Therm 1D -> nonstationary heat transfer FE analysis for 1D axisymmetric bodies (linear 2-node ring)
- Coil 2D -> nonstationary heat transfer FE analysis for 2D plane axisymmetric bodies (linear 4-node quadrangle)
- Model of thermal properties -> thermal conductivity, density and specific heat depend on the coil temperature and its tightening
- **Heat transfer** -> time and temperature dependent heat transfer coefficient and ambient temperature

Metallurgical Monitoring — Theoretical Background FEM Temperature calculations

Metallurgical Monitoring — Theoretical Background MetaROLL Module — Metallurgy during rolling

Process parameters in every pass:

- temperatures
 - strains
- strain rates

Activation energy of recrystalization Zenner-Hollomon parameter

Increasing of the activation energy in case of precipitation

Recrystallized part Xrex for given temperature, effective strain and time available between neighbouring passes

! pure physical approach!

Residual strain

FIrest = FIef *(1 - Xrex)

Size of recrystallized grain of austenite

Growth of recrystallized grain between particular passes

Metallurgical Monitoring — Theoretical Background MetaCOOL Module — Metallurgy after rolling - Step 1

Metallurgical Monitoring — Theoretical Background MetaCOOL Module — Metallurgy after rolling - Step 2

Avrami equation for pearlite and bainite transformation

$$X_i(t, T) = (1 - exp(-k \cdot t^n)) \cdot X_{\gamma}$$

Koistinen-Marburger equation for martensite transformation

$$Xm(T) = (1-exp(-b\cdot(T_{Ms}-T)^n))\cdot X_{\gamma}$$

Metallurgical Monitoring — Theoretical Background MetaCOOL Module — Metallurgy after rolling - Step 3

Linear regression $HV = C_0 + \%Fe * \Sigma (C1_{i*}c_i) + \%Pe * \Sigma (C2_{i*}c_i) + \%Ba * \Sigma (C3_{i*}c_i) + \%Ma * \Sigma (C4_{i*}c_i)$

Metallurgical Monitoring — Off-line implementation SPP software — Strip Properties Predictor

Metallurgical Monitoring — Off-line implementation DLPP software — Danieli Long Products Properties Predictor

Off-line implementation DLPP software – Verification for WIRE ROD rolling

(64 pcs)	С	Mn	Si	Cr	Ni	Ti	В
various diameters	0.403	0.64	0.26	0.06	0.02	0.002	0.0002

Off-line implementation DLPP software – Verification for BAR rolling

On-line Monitoring An example for Hot Strip Mill - Strip Observer Monitor

Strip Observer Monitor predicts final mechanical properties of hot rolled strip in coil in one point of interest from process data being received on-line from the rolling mill control system.

On-line Monitoring Strip Observer Monitor – Basic chart

On-line Monitoring Strip Observer Monitor – Cooling of strip in coil

On-line Monitoring Strip Observer Monitor – SW Implementation

On-line Monitoring Data Interface – Strip Data

```
chemCompos;
double dThickness;
double dLength;
double dWidth;
double dLengthCoord;
double dWidthCoord;
double dThicknessCoord;
int nLayer;
double *dTau;
double *dTempLeftEdge;
double *dTempCentre;
double *dTempRightEdge;
Double dInDiameter;
```

chemCompos	Chemical composition double C, Mn, Si, Cr,V, Ti, Nb, Al, N, Mo, Ni, B, W, P, S, Cu, As, Sn, Co; and initial grain size of austenite of steel double Grain;						
dThickness	Strip thickness in mm.						
dWidth	Strip width in mm.						
dLength	Strip length in mm.						
dLengthCoord	Relative coordinate of the point of interest along strip length.						
dWidthCoord	Relative coordinate of the point of interest along strip width.						
dThicknessCoord	Relative coordinate of the point of interest along strip width.						
nLayer	Number of strip lengthwise segments.						
*dTau	Coiling times of each strip segment in sec.						
*dTempLeftEdge	Lengthwise averaged temperature of the left edge of each strip segment before coiling in C.						
*dTempCentre	Lengthwise averaged temperature in the centre of each strip segment before coiling in C.						
* dTempRightEdge	Lengthwise averaged temperature of the right edge of each strip segment before coiling in C.						
dInDiameter	Inner diameter of the coil in mm.						
dOutDiameter	Outer diameter of the coil in mm.						

On-line Monitoring Data Interface – Rolling Technology Data

```
int nPass;
double *dFI;
double
        *dRate;
double
        *dTVA;
SPOB CURVE dTPC;
double
        MTemp Furnace;
double
        MTemp MH1;
double
        MTemp MH2;
double
        MTemp MH3;
double
        MTemp MH4;
double
        MTemp MH5;
```

nPass	Number of passes.					
*pFI	Logarithmic strain in each pass.					
*pRate	Strain rate in each pass in s-1.					
*pTempTVA	Rolling temperature in each pass in C.					
dTPC	Temperature curve between passes.					
MTemp_Furnace	Measured temperature in the Stossofen1 in C.					
MTemp_MH1	Measured temperature in the Messhaus1 in C.					
MTemp_MH2	Measured temperature in the Messhaus2 in C.					
MTemp_MH3	Measured temperature in the Messhaus3 in C.					
MTemp_MH4	Measured temperature in the Messhaus4 (exit rolling temperature) in C.					
MTemp_MH5	Measured temperature in the Messhaus5 (coiling temperature) in C.					

On-line Monitoring Special module 1

Beginning of austenite transformation during rolling:

```
int SpOb_CalcTransf(
    const SPOB_MAIN_INPUT *pMainInput,
    const int nResultCount,
    SPOB_TRANSFORMATION_RESULT *pResults,
    int *pPassNumber);
```

<pre>const SPOB_MAIN_INPUT *pMainInput</pre>	Input data structure containing information about rolling process parameters in the point of interest
const int nResultCount	Number of passes
SPOB_TRANSFORMATION_RESULT *pResults	Output data structures containing information about austenite transformation in the point of interest in each pass
int *pPassNumber	Index of the pass where austenite transformation in the point of interest started

Metallurgical Monitoring Special module 2

Full automatic regime of metallurgical calculations:

```
int SpOb_AutomaticCalc(
    const SPOB_MAIN_INPUT *pMainInput,
    const SPOB_COIL_INPUT *pCoilInput,
    SPOB_PROPERTIES_RESULT *pResult);
```

<pre>const SPOB_MAIN_INPUT *pMainInput</pre>	Input data structure containing information about rolling process parameters in the point of interest					
const SPOB_COIL_INPUT	Input data structure containing information					
*pCoilInput	about cooling of the strip in coil					
SPOB PROPERTIES RESULT	Output data structure containing calculated					
*pResult	microstructure shares and mechanical					
"presurc	properties of strip in the point of interest					

Metallurgical Monitoring Summary

- the software SPP and DLPP has been developed for off-line computer simulation of metallurgical processes in hot rolled strips, bars and wire rods during rolling and after subsequent cooling!
- the SpOb software has been developed for prediction of final mechanical properties of hot rolled strips coupled with process data being received on-line from the rolling mill control system!
- based on specified steel chemistry and rolling technology these software tools predict microstructure parameters of deformed austenite after rolling, especially grain size, recrystallized fraction and retained strain!
- based on specified steel chemistry, microstructure of deformed austenite and cooling strategy these software tools predicts secondary structure shares and corresponding mechanical properties of final product!

thanks for your attention!